Inspection Instrument for Indicators

Comparison measuring instruments which ensure high quality, high accuracy and reliability.

i-Checker
 SERIES 170

The i-Checker is specially designed to calibrate dial indicators, dial test indicators, and other electronic comparison gage heads with a stroke of up to 100 mm (4").

- $\pm(0.2+\llcorner/ 100) \mu \mathrm{m}$ indication accuracy.
- Directly inspects an indicator with a stroke of up to 100 mm (4"). The dial test indicator, bore gage and lever-type inductive head can be inspected with optional accessories.
- Adjustment of the measurement position is very easily accomplished because of semi-automatic measurement and fully automatic measurement functions.
- Creates and prints out a simple inspection certificate.
- Saves inspection results as a CSV file for analysis by software.

SPECIFICATIONS

Order No.*	Remarks
$170-311$	with $\varnothing 8 \mathrm{~mm}$ bush
$170-312$	with $\varnothing 3 / 8^{\prime \prime}$ bush

* To denote your $A C$ power cable add the following suffixes to the order No.: A for ULCSA, D for CEE, E for BS, K for EK, No suffix is required for JIS/100V

DIMENSIONS

Applicable Indicators

- Dial indicator
- Test indicator*
- Hicator - Bore gage ${ }^{* *}$
- Digimatic indicator*** - Linear gage
* requires optional test indicator attachment set.
* Contact the nearest Mitutoyo sales office for testable indicators.
** requires optional bore gage accessory.
*** requires optional SPC cable for fully automatic measurement.

Using test indicator attachment set (O2ASK000)

Technical Data

Measuring Range: $100 \mathrm{~mm} / 4^{\prime \prime}$
Resolution: $\quad 0.02 \mu \mathrm{~m} / 0.8 \mu \mathrm{in}$
Accuracy: $\quad \pm(0.2+\mathrm{L} / 100) \mu \mathrm{m}$ in vertical position (at $\left.20^{\circ} \mathrm{C}\right) \quad \pm(0.3+2 \mathrm{~L} / 100) \mu \mathrm{m}$ in lateral position $\mathrm{L}=$ arbitrary length (mm)
Drive method: Electric motor
Measuring Unit: Reflective-type glass linear encoder
Thermal expansion coefficient: $(8 \pm 1) \times 10^{-6} / \mathrm{K}$
Measurement Semi-automatic / Fully
method: automatic*
Dimensions: $\quad 184 \times 225 \times 532 \mathrm{~mm}(\mathrm{~W} \times \mathrm{D} \times \mathrm{H})$
Operating temperature range: $20^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$
Power supply: $\quad 100 \mathrm{VAC}$ to $240 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$
Mass: $20 \mathrm{~kg} / 44.1 \mathrm{lbs}$

* Automatic measurement requires the indicator's connection cable Additionally some form of indicator, along with a connecting machine (the optional accessory for indicator as a Digimatic power-supply unit on EF counter) will be needed

Functions

Inspect your analog indicator semi-automatically!
The pointer of the analog indicator is positioned just before the measuring point automatically via Mitutoyo's Semi-automatic Measurement function. After that, inspection begins simply by adjusting the pointer position with the jog-dial. Because of this function, measurement time is reduced and user fatigue is practically eliminated. Additionally all functions necessary for inspection are combined in the control box so that the operator need not rely on excessive eye movement to adjust the pointer.

Fully automatic inspection of digital indicator The Automatic Measurement function, in tandem with a digital indicator makes the spindle move so that measurement data is acquired automatically. Therefore, manual adjustment to the measurement position is unnecessary and the efficiency of every inspection is enhanced.

Create and printout a simplified inspection certificate It is possible to create, edit and print out your own inspection certificate. Furthermore, that data can be saved as a CSV file.

Optional Accessories

02ASK000: Test indicator attachment set ($\varnothing 6 \mathrm{~mm}$ stem)
02ASK180: Test indicator attachment set (ø8mm stem)
02ASK370: Test indicator holder ($\varnothing 6 \mathrm{~mm}$ stem)
02ASK380: Test indicator holder ($\varnothing 8 \mathrm{~mm}$ stem)
02ASL310: Accessory for Bore gages
902803: $\varnothing 6 \mathrm{~mm}$ dovetail grooved stem
902804: $\quad 88 \mathrm{~mm}$ dovetail grooved stem
02ASK040: Stem bush ø6mm
02ASJ856: Stem bush ø8mm
02ASK150: Stem bush ø8mm, short
02ASL150: Stem bush ø10, short
02ASK050: Bush $\varnothing 9.5$ (Requires 02ASK070
02ASK060: Stem bush ø12mm
02ASK070: Stem bush ø 15 mm
02ASK080: Stem bush ø20mm
02ASK710: Stem bush ø28mm
02ASK090: Stem bush 3/8"
02ASK130: Stem bush case
02ASK730: Reflector
937179T: Foot switch

Optional accessory

Stand for bore gage inspection (12AAK824)
Can be used for the inspection of bore gages 511 series standard type and with micrometer head up to 400 mm . (Refer to pages C-33 and C-39 for details.)

SERIES 521 - Calibration Tester

- The Calibration Tester is specially designed to calibrate short range dial indicators, dial test indicators, and electronic gage heads.
- Universal bracket accepts any dial indicator, dial test indicator or electronic gage without any additional accessory.
- Clamping capacity: ø4mm to ø10mm

SPECIFICATIONS

Metric			
Order No.	Range	Graduation	Accuracy
$\mathbf{5 2 1 - 1 0 3}$	$0-1 \mathrm{~mm}$	0.0002 mm	$\pm 0.2 \mu \mathrm{~m}$
$\mathbf{5 2 1 - 1 0 5}$	$0-5 \mathrm{~mm}$	0.0002 mm	$\pm 0.8 \mu \mathrm{~m}$

Inch			
Order No.	Range	Graduation	Accuracy
$\mathbf{5 2 1 - 1 0 4}$	$0-.05^{\prime \prime}$	$.00001^{\prime \prime}$	$\pm .00001^{\prime \prime}$
$\mathbf{5 2 1 - 1 0 6}$	$0-.2^{\prime \prime}$	$.00001^{\prime \prime}$	$\pm .00003^{\prime \prime}$

Dial Indicator Applications

Comparison measuring instruments which ensure high quality, high accuracy and reliability.

Thickness Gages

SERIES 547, 7

- Dial thickness gages can quickly measure the thickness of thin products such as paper and felt.
- Contact point and anvil are both made of ceramic: rust-free (547-401 is excluded.)
- Integrated molding of the bezel and crystal ensures protection against water and oil penetration via the front face.

Standard Type

High Accuracy Type

Lightweight Type (integrated molding of the bezel)

Usage examples
Measuring paper thickness

Measuring thickness of a human hair

DIMENSIONS
Unit: mm

7301, 7305, 547-301

7321, 7323, 547-321

Optional Accessories

905338: SPC cable (1m) for digital models
905409: SPC cable (2 m) for digital models 02AZD790F: SPC cable for U-WAVE (160 mm)
Digimatic Mini-Processor DP-1VR
Refer to page A-13 for details.

Input Tool

Convenient Interface Input Tools which enable the conversion of measurement data to keyboard signals and directly input them to cells in off-the-shelf spreadsheet software such as Excel.
(Refer to pages A-5 to A-6 for details.)

DIMENSIONS

Unit: mm

Application examples

 Note: Parallelism between the flat point and anvil 547-313: $10 \mu \mathrm{~m}$
7313: $5 \mu \mathrm{~m}$

DIMENSIONS

Unit: mm

DIMENSIONS

Unit: mm

Lens thickness measurement

- Thickness of concave-convex lenses and surfaces can be measured.
- Anvils and contact points are interchangeable to enable concave surfaces to be measured.

Tube thickness measurement

- Pipe wall thickness, thickness of curved boards can be measured.

Groove depth measurement

- Suitable for measuring narrow grooves.

- Measuring face of the contact point and anvil are blade-shaped (thickness: 1 mm).

Dial Indicator Applications

Comparison measuring instruments which ensure high quality, high accuracy and reliability.
Thickness Gages
SERIES 547, 7

SPECIFICATIONS

Metric	Range	Resolution	Accuracy	Measuring force	Remarks
Order No.					
547-401	$0-12 \mathrm{~mm}$	0.001 mm	$\pm 3 \mathrm{~mm}$	3.5 N or less	High accuracy, carbide point anvil
547-301	$0-10 \mathrm{~mm}$	0.01 mm	$\pm 20 \mu \mathrm{~m}$	1.5 N or less	Standard, ceramic point/anvil
547-321	$0-10 \mathrm{~mm}$	0.01 mm	$\pm 20 \mu \mathrm{~m}$	1.5 N or less	Deep throat, ceramic point/anvil
547-313	$0-10 \mathrm{~mm}$	0.01 mm	$\pm 20 \mu \mathrm{~m}$	1.5 N or less	Lens thickness
547-315	$0-10 \mathrm{~mm}$	0.01 mm	$\pm 20 \mu \mathrm{~m}$	1.5 N or less	Groove depth
547-360	$0-10 \mathrm{~mm}$	0.01 mm	$\pm 20 \mu \mathrm{~m}$	1.5 N or less	Tube thickness
Inch/Metric					
Order No.	Range	Resolution	Accuracy	Measuring force	Remarks
547-400S/ -	0-.47"	.00005"/0.001mm	$\pm .0001$ " $1 \pm 3 \mu \mathrm{~m}$	3.5 N or less	High accuracy, carbide point anvil
- / 547-526S*	0-.47"	. 0001 "/0.001mm	$\pm .00021 / \pm 5 \mu \mathrm{~m}$	1.5 N or less	Standard, ceramic point/anvil
547-300S / 547-500S*	0-.4"/0-.47"*	. 0005 "/ 0.01 mm	$\pm .001$ " 1 20 mm	1.5 N or less	Standard, ceramic point/anvil
547-320S / 547-520S*	0-.4"/0-.47"*	. $00005^{\prime \prime} / 0.01 \mathrm{~mm}$	$\pm .001$ " 1 20 $\mu \mathrm{m}$	1.5 N or less	Deep throat, ceramic point/anvil
547-312S / 547-512S*	0-.4"/0-.47"*	. 0005 "/0.01mm	$\pm .001$ " $1 \pm 20 \mu \mathrm{~m}$	1.5 N or less	Lens thickness
547-316S / 547-516S*	0-.4"/0-.47"*	. 0005 "/0.01mm	$\pm .001$ " 1 $20 \mu \mathrm{~m}$	1.5 N or less	Groove depth
547-361S / 547-561S*	0-.4"/0-.47"*	. 0005 "/0.01mm	$\pm .001$ " 1 20 mm	1.5 N or less	Tube thickness
* using ID-SX Digimatic indicator.					
Metric					
Order No.	Range	Graduation	Accuracy	Measuring force	Remarks
7327	$0-1 \mathrm{~mm}$	0.001 mm	$\pm 5 \mathrm{~mm}$	1.4 N or less	Fine dial reading, ceramic point/anvil
7301	$0-10 \mathrm{~mm}$	0.01 mm	$\pm 15 \mu \mathrm{~m}$	1.4 N or less	Standard, ceramic point/anvil
7305	$0-20 \mathrm{~mm}$	0.01 mm	$\pm 20 \mu \mathrm{~m}$	2.0 N or less	Standard, ceramic point/anvil
7321	$0-10 \mathrm{~mm}$	0.01 mm	$\pm 15 \mu \mathrm{~m}$	1.4 N or less	Deep throat, ceramic point/anvil
7323	$0-20 \mathrm{~mm}$	0.01 mm	$\pm 22 \mu \mathrm{~m}$	2.0 N or less	Deep throat, ceramic point/anvil
7313	$0-10 \mathrm{~mm}$	0.01 mm	$\pm 15 \mu \mathrm{~m}$	1.4 N or less	Lens thickness
7315	$0-10 \mathrm{~mm}$	0.01 mm	$\pm 15 \mu \mathrm{~m}$	1.4 N or less	Groove depth
7360	$0-10 \mathrm{~mm}$	0.01 mm	$\pm 15 \mu \mathrm{~m}$	1.4 N or less	Tube thickness
73315 (lightweight type)	$0-10 \mathrm{~mm}$	0.01 mm	$\pm 20 \mu \mathrm{~m}$	1.4 N or less	Integrated molded bezel
Inch					
Order No.	Range	Graduation	Accuracy	Measuring force	Remarks
73265	0-.05"	.0001"	$\pm .0002^{\prime \prime}$	1.4 N or less	Fine dial reading, ceramic point/anvil
7300S	0-.5"	.001"	$\pm .001$ "	1.4 N or less	Standard, ceramic point/anvil
7304S	0-1"	.001"	$\pm .002$ "	2.0 N or less	Standard, ceramic point/anvil
7322S	0-1"	.001"	$\pm .002^{\prime \prime}$	2.0 N or less	Deep throat, ceramic point/anvil
7312S	0-.5"	.001"	$\pm .001{ }^{\prime \prime}$	1.4 N or less	Lens thickness
7316 S	0.5"	.001"	$\pm .001$ "	1.4 N or less	Groove depth
7361S	0-. $5^{\prime \prime}$.001"	$\pm .001{ }^{\prime \prime}$	1.4 N or less	Tube thickness

Measuring contact force on a relay

Contact Force Gage

 SERIES 546- Contact Force Gages are widely used to determine the measuring force applied by an instrument to a workpiece, as well as contact forces of electrical relays, micro-switches, valves and precision springs.
- Thanks to the miniature anti-friction bearing in the fulcrum, stable measurement is guaranteed.
- 2 types are available: Standard and peak hold.

DIMENSIONS

SPECIFICATIONS

Standard			
Order No.	Graduation	Range	Accuracy
546-112	2 mN	6 mN - 50 mN	$\begin{gathered} \pm 0.5 \\ \text { (division) } \end{gathered}$
546-113	5 mN	$10 \mathrm{mN}-100 \mathrm{mN}$	
546-114	10 mN	$30 \mathrm{mN}-300 \mathrm{mN}$	
546-115	0.02 N	$0.06 \mathrm{~N}-0.5 \mathrm{~N}$	
546-116	0.05 N	$0.1 \mathrm{~N}-1 \mathrm{~N}$	
546-117	0.05 N	$0.15 \mathrm{~N}-1.5 \mathrm{~N}$	
546-118	0.1 N	$0.3 \mathrm{~N}-3 \mathrm{~N}$	
546-119	0.2 N	$0.6 \mathrm{~N}-5 \mathrm{~N}$	

Peak hold			
Order No.	Graduation	Range	Accuracy
-	-	-	-
546-133	5 mN	$10 \mathrm{mN}-100 \mathrm{mN}$	$\begin{gathered} \pm 0.5 \\ \text { (division) } \end{gathered}$
546-134	10 mN	$30 \mathrm{mN}-300 \mathrm{mN}$	
546-135	0.02 N	$0.06 \mathrm{~N}-0.5 \mathrm{~N}$	
546-136	0.05 N	$0.1 \mathrm{~N}-1 \mathrm{~N}$	
546-137	0.05 N	$0.15 \mathrm{~N}-1.5 \mathrm{~N}$	
546-138	0.1 N	$0.3 \mathrm{~N}-3 \mathrm{~N}$	
546-139	0.2 N	0.6N-5N	

Dial Indicator Applications

Comparison measuring instruments which ensure high quality, high accuracy and reliability.

Dial Caliper gage

SERIES 209 - Internal Measurement Type

- Dial caliper gages are inside diameter measurement tools, which have a broader range of applications including the measurement of hole diameter and internal measurement of special shapes (grooves).

Internal measurement

SPECIFICATIONS

Metric						
Order No.	Range	Graduation	Range of opening	Dial face	Accuracy	Measuring force
$\mathbf{2 0 9 - 1 2 5}$	$6-18 \mathrm{~mm}$	0.01 mm	$5.8-18.2 \mathrm{~mm}$	$0-100-100$	$\pm 40 \mu \mathrm{~m}$	2.0 N or less
$\mathbf{2 0 9 - 1 2 6}$	$10-22 \mathrm{~mm}$	0.01 mm	$9.8-22.2 \mathrm{~mm}$	$0-100-100$	$\pm 40 \mu \mathrm{~m}$	2.0 N or less
$\mathbf{2 0 9 - 1 2 7}$	$20-32 \mathrm{~mm}$	0.01 mm	$19.8-32.2 \mathrm{~mm}$	$0-100-100$	$\pm 40 \mu \mathrm{~m}$	2.0 N or less
$\mathbf{2 0 9 - 1 5 5}$	$5-15 \mathrm{~mm}$	0.01 mm	$4.8-15.2 \mathrm{~mm}$	$0-100$	$\pm 30 \mu \mathrm{~m}$	2.0 N or less
$\mathbf{2 0 9 - 1 5 6}$	$10-20 \mathrm{~mm}$	0.01 mm	$9.8-20.2 \mathrm{~mm}$	$0-100$	$\pm 30 \mu \mathrm{~m}$	2.0 N or less
$\mathbf{2 0 9 - 1 7 5}$	$10-30 \mathrm{~mm}$	0.01 mm	$9.8-30.2 \mathrm{~mm}$	$0-100-100$	$\pm 40 \mu \mathrm{~m}$	2.0 N or less
$\mathbf{2 0 9 - 1 7 6}$	$20-40 \mathrm{~mm}$	0.01 mm	$19.8-40.2 \mathrm{~mm}$	$0-100-100$	$\pm 40 \mu \mathrm{~m}$	2.0 N or less

*1: Datum point setting is required (Reference gage available as an optional accessory).
*2: Range of opening is a value for reference. Accuracy is not guaranteed if the Dial Caliper Gage is used beyond the measuring range. * Please note that this Dial Caliper Gage is only provided with standard models. Special size and special specification models are not supported.

DIMENSIONS

Optional accessories

Dial indicator
Dial protection cover: No.21DZA000
Refer to page C-45 for details.
Recommended dial indicators
No.2046SB: Dial indicator (Graduation: 0.01 mm) No.2109SB-10: Dial indicator (Graduation: 0.001 mm)

Dial Snap Gage

- Designed for quick GO/NG judgment of diameters of cylinders and shafts in machining processes.
- Wide ($13.5 \times 12 \mathrm{~mm} / 1.53 \times 47$ "), flat carbide anvils.
- Anvil retracting stroke: $2 \mathrm{~mm} / .080$ " Anvil positioning range: $25 \mathrm{~mm} / 1^{\prime \prime}$
- Adjustment nut: adjusts the measuring range.
- Clamp: adjustment nut
- Flatness of measuring face: $1 \mu \mathrm{~m}$
- Stability of indication: $2 \mu \mathrm{~m}$ or less (stability of indicators is not included)
- The dial indicator and protection cover are optional. Also, some dial indicators and protection covers cannot be used with the dial snap gage. Consult Mitutoyo if intending to use dial indicators which are not recommended.

SPECIFICATIONS
Metric

Order No.	Range	Parallelism	Measuring force	Recommended dial indicator (optional)
201-101	0-25mm	$5 \mu \mathrm{~m}$	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2046SB (0.01 mm reading), 2109SB-10 (0.001mm reading)
201-102	25.50 mm	$5 \mu \mathrm{~m}$	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2046SB (0.01 mm reading), 2109SB-10 (0.001mm reading)
201-103	$50-75 \mathrm{~mm}$	$5 \mu \mathrm{~m}$	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2046SB (0.01 mm reading), 2109SB-10 (0.001mm reading)
201-104	75-100mm	$5 \mu \mathrm{~m}$	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2046SB (0.01 mm reading), 2109SB-10 (0.001mm reading)
201-105	100-125mm	$5 \mu \mathrm{~m}$	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2046SB (0.01 mm reading), 2109SB-10 (0.001 mm reading)
201-106	125-150mm	$5 \mu \mathrm{~m}$	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2046SB (0.01 mm reading), 2109SB-10 (0.001 mm reading)
201-107	150-175mm	$5 \mu \mathrm{~m}$	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2046SB (0.01 mm reading), 2109SB-10 (0.001 mm reading)
201-108	175-200mm	$5 \mu \mathrm{~m}$	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2046SB (0.01 mm reading), 2109SB-10 (0.001mm reading)
201-109	200-225mm	$5 \mu \mathrm{~m}$	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2046SB (0.01 mm reading), 2109SB-10 (0.001mm reading)
201-110	225-250mm	$5 \mu \mathrm{~m}$	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2046SB (0.01 mm reading), 2109SB-10 (0.001mm reading)
201-111	250-275mm	$5 \mu \mathrm{~m}$	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2046SB (0.01 mm reading), 2109SB-10 (0.001mm reading)
201-112	275-300mm	$5 \mu \mathrm{~m}$	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2046SB (0.01mm reading), 2109SB-10 (0.001mm reading)

Inch				
Order No.	Range	Parallelism	Measuring force	Recommended dial indicator (optional)
201-151	0-1"	.0002"	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2803SB-10 (.0001" reading)
201-152	1-2"	.0002"	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2803SB-10 (.0001" reading)
201-153	2-3"	.0002"	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2803SB-10 (.0001" reading)
201-154	3-4"	.0002"	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2803SB-10 (.0001" reading)
201-155	4-5"	.0002"	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2803SB-10 (.0001" reading)
201-156	5-6"	.0002"	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2803SB-10 (.0001" reading)
201-157	6-7"	.0002"	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2803SB-10 (.0001" reading)
201-158	7-8"	.0002"	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2803SB-10 (.0001" reading)
201-159	8-9"	.0002"	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2803SB-10 (.0001" reading)
201-160	9-10"	.0002"	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2803SB-10 (.0001" reading)
201-161	10-11"	.0002"	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2803SB-10 (.0001" reading)
201-162	11-12"	.0002"	$15 \mathrm{~N} \pm 3 \mathrm{~N}$	2803SB-10 (.0001" reading)

*1: Measuring force is that force present before an indicator is installed and is determined at the point where the spindle is retracted 1 mm from the rest position.

DIMENSIONS

Unit: mm

Stands

Comparison measuring instruments which ensure high quality, high accuracy and reliability.

SERIES 7 - Magnetic Stands

- Mitutoyo's Magnetic Stands accept all dial indicators and dial test indicators (with stem $\varnothing 6$ or $\varnothing 8$) and clamp to iron or steel surfaces with a strong magnetic force.
- 7014-10, 7031, 7032 and 7033B have a dovetail groove.

7010-10

7011-10

7012-10

7014-10
(without ON/OFF switching of magnetic clamping)

7032B

7031B

SPECIFICATIONS

Order No.	Description	Applicable holding stem dia.	Magnetic force	Remarks
7010-10	Magnetic stand	$\varnothing 6 \mathrm{~mm}, \varnothing 8 \mathrm{~mm}$	Approx. 600N	-
7010S-10	Magnetic stand	ø4mm, $\varnothing 8 \mathrm{~mm}, ~ \varnothing 9.53 \mathrm{~mm}$ (3/8")	Approx. 600N	-
7011-10	Magnetic stand	$\varnothing 6 \mathrm{~mm}, ~ \varnothing 8 \mathrm{~mm}$	Approx. 600N	With fine adjustment
70115-10	Magnetic stand	ø4mm, ø8mm, $\varnothing 9.53 \mathrm{~mm}$ (3/8")	Approx. 600N	With fine adjustment
7012-10	Magnetic stand	ø6mm, ø8mm, ø9.53mm (3/8")	Approx. 600N	-
7014-10	Mini magnetic stand	$\varnothing 6 \mathrm{~mm}, \varnothing 8 \mathrm{~mm}$	Approx. 150N	Without magnet ON/OFF
7014E-10	Mini magnetic stand	ø4mm, ø9.53mm (3/8")	Approx. 150N	Without magnet ON/OFF
7033B	Universal magnetic stand	ø6, $\varnothing 8 \mathrm{~mm}, \varnothing 9.53 \mathrm{~mm}\left(3 / 8^{\prime \prime}\right)$	Approx. 600N	With mechanical locking system
7031B	Universal magnetic stand	$\varnothing 6, \varnothing 8 \mathrm{~mm}, \varnothing 9.53 \mathrm{~mm}\left(3 / 8^{\prime \prime}\right)$	Approx. 300N	With mechanical locking system
7032B	Universal magnetic stand	ø6, $\varnothing 8 \mathrm{~mm}, \varnothing 9.53 \mathrm{~mm}\left(3 / 8{ }^{\prime \prime}\right)$	Approx. 600N	With mechanical locking system

Stands

Comparison measuring instruments which ensure high quality, high accuracy and reliability.

Dial Gage Stands SERIES 7

- Vertical fine adjustment is available with onetouch control thanks to the parallel spring suspension.

7007-10
(with 90 mm square anvil)

SPECIFICATIONS

Metric			
Order No.	Stem hole	Remarks	
$7001-10$	$\varnothing 8 \mathrm{~mm}, \varnothing 9.53 \mathrm{~mm}$	With serrated anvil	
$7002-10$	$\varnothing 8 \mathrm{~mm}, \varnothing 9.53 \mathrm{~mm}$	With flat anvil	
$7007-10$	$\varnothing 8 \mathrm{~mm}, \varnothing 9.53 \mathrm{~mm}$	With square anvil	

* Perpendicularity of the mounting hole to the anvil: less than $0.4 \mathrm{~mm} / 100 \mathrm{~mm}$
* Take note that when mounting the high-accuracy Linear Gages (with resolution of $0.1 \mu \mathrm{~m}$ or less) to these stands, it may affects the indication value depends on the perpendicularity of the mounting hole to the top surface of the anvils.

Optional Accessories

101461: Hardened steel flat anvil

No. 101461
Hardened steel

101463: Hardened steel domed anvil* *Not available for 7007-10.

No. 101463 Hardened steel ${ }^{\text {SR2 }}$

Stands

Comparison measuring instruments which ensure high quality, high accuracy and reliability.

SERIES 215 - Granite Comparator Stands

- The base is made of black granite that stays free of burrs and build-ups due to its finegrain composition.
- Easy maintenance due to the non-rusting

SPECIFICATIONS

Order No.	Granite base size $(W \times D \times H)$	Column travel	Stem hole	Remarks
$\mathbf{2 1 5 - 1 5 0 - 1 0}$	$120 \times 180 \times 50 \mathrm{~mm}$	110 mm	$\varnothing 8 \mathrm{~mm}, \varnothing 9.53 \mathrm{~mm}$	With fine adjustment of 1 mm range
$\mathbf{2 1 5 - 1 5 1 - 1 0}$	$150 \times 200 \times 50 \mathrm{~mm}$	250 mm	$\varnothing 8 \mathrm{~mm}, \varnothing 9.53 \mathrm{~mm}$	With fine adjustment of 1 mm range
$\mathbf{2 1 5 - 1 5 3 - 1 0}$	$200 \times 250 \times 80 \mathrm{~mm}$	260 mm	$\varnothing 8 \mathrm{~mm}, \varnothing 9.53 \mathrm{~mm}$	With fine adjustment of 1 mm range
$\mathbf{2 1 5 - 1 5 6 - 1 0}$	$300 \times 250 \times 80 \mathrm{~mm}$	275 mm	$\varnothing 8 \mathrm{~mm}, \varnothing 9.53 \mathrm{~mm}$ $\varnothing 20 \mathrm{~mm}$	With fine adjustment over the entire travel

* Perpendicularity of the mounting hole to the anvil: less than $0.2 \mathrm{~mm} / 100 \mathrm{~mm}$.
* Take note that when mounting the high-accuracy Linear Gages (with resolution of $0.1 \mu \mathrm{~m}$ or less) to these stands, it may affects the indication value depends on the perpendicularity of the mounting hole to the top surface of the anvils.

DIMENSIONS

Optional Accessories

21JAA329: ø8mm bush
21JAA330: $\varnothing 9.53 \mathrm{~mm}$ bush
21JAA331: ø15mm bush only available for 215-156-10

Application example using Digimatic Indicator ID-H.

Optional Accessories

21JAA329: 88 mm bush ${ }^{\star}$
21JAA330: $\varnothing 9.53 \mathrm{~mm}$ ($3 / 8^{\prime \prime}$) bush*
21JAA331: ø15mm bush*

* Only available for 215-505-10

SERIES 215 - Comparator Stands

- Comparator Stands have a very stable castiron base that enables precise measurement.
- The partially serrated anvil prevents very flat workpieces from wringing to it and the $2.3 \mu \mathrm{~m}$ flatness (or better) promotes accurate measurement.
- The 215-505-10 model has a threaded column which enables easy and precise coarse adjustment.
- Serrated anvils $110 \times 110 \mathrm{~mm}$ are supplied with 215-405-10, and $150 \times 150 \mathrm{~mm}$ with 215-505-10 models.

SPECIFICATIONS

Order No.	Square anvil size (W x D)	Column travel	Stem hole	Remarks
$\mathbf{2 1 5 - 4 0 5 - 1 0}$	$110 \times 110 \mathrm{~mm}$	235 mm	$\varnothing 8 \mathrm{~mm}, \varnothing 9.53 \mathrm{~mm}$	With fine adjustment of 1 mm range
$\mathbf{2 1 5 - 5 0 5 - 1 0}$	$150 \times 150 \mathrm{~mm}$	275 mm	$\varnothing 8 \mathrm{~mm}, \varnothing 9.53 \mathrm{~mm}$, $\varnothing 20 \mathrm{~mm}$	With fine adjustment over the entire travel

* Perpendicularity of the mounting hole to the anvil: less than $0.4 \mathrm{~mm} / 100 \mathrm{~mm}$
* Take note that when mounting the high-accuracy Linear Gages (with resolution of $0.1 \mu \mathrm{~m}$ or less) to these stands, it may affects the indication value depends on the perpendicularity of the mounting hole to the top surface of the anvils.

DIMENSIONS

Stands

Comparison measuring instruments which ensure high quality, high accuracy and reliability.

SERIES 519 - Transfer Stand

- Transfer Stands are designed for comparison measurements of size using a dial indicator or Digimatic Indicator.

519-109-10
(with a serrated anvil)

SPECIFICATIONS

Metric

Order No.	Stem hole	Remarks
$519-109-10$	$\varnothing 8 \mathrm{~mm}, \varnothing 9.53 \mathrm{~mm}$	With serrated anvil

* Perpendicularity of the mounting hole to the anvil: less than $0.4 \mathrm{~mm} / 100 \mathrm{~mm}$
* Take note that when mounting the high-accuracy Linear Gages (with resolution of $0.1 \mu \mathrm{~m}$ or less) to these stands, it may affects the indication value depends on the perpendicularity of the mounting hole to the top surface of the anvils.

DIMENSIONS

Column travel: $0-320 \mathrm{~mm}$

Optional Accessories
101462: Hardened steel Serrated anvil
101461: Hardened steel flat anvil
101463: Hardened steel domed anvil

Hardened steel

No. 101461

Hardened steel

No. 101463

Hardened steel

Accuracy	Mitutoyo	Reference JJS B 7540 Grade 1, 100 mm or less
	$2 \mu \mathrm{~m}$ or less	$10 \mu \mathrm{~m}$ or less

Optional Accessories

No. 101462 Serrated anvil (standard accessory)

V-Block Set SERIES 181

SPECIFICATIONS

Me			Inch		
Order No.	Max. workpiece dia.	Remarks	Order No.	Max. workpiece dia.	Remarks
181-902-10	25 mm	With clamp	181-901-10	$1^{\prime \prime}$	With clamp

DIMENSIONS

Quick Guide to Precision Measuring Instruments

Nomenclature

Dial faces

Mitutoyo's Response to Dial Indicator Standard B7503: 2011

- We guarantee the accuracy of completed products by inspecting them in the vertical posture. Standard-attached inspection certificate includes inspection data.
- We issue paid-for inspection certificates for horizontal or opposite posture if required.
- The old JIS Standard indicates that "the uncertainty of calibration" is evaluated inclusively. On the other hand, the new JIS Standard indicates that conformity or nonconformity to specification is verified based on JIS B 0641-1 and that it is preferred that the uncertainty is evaluated based on ISO/TS 14253-2 and ISO/IEC Guide 98. Therefore, we perform shipping inspection of dial indicators inclusive of the uncertainty of calibration as usual.

Dial Indicator Standard B7503 : 2011 (Extract from JIS/Japanese Industrial Standards)

\begin{tabular}{|c|c|c|c|}
\hline Item \& Calibration method \& Diagram of calibration setup in vertical posture (example) \& Tools for calibration (example)

\hline Indication error

Retrace error \& | Hold the dial indicator with its spindle set vertically downward, retract the spindle (retraction direction) to set the dial hand at the zero point, and determine the indication error at the belowmentioned measurement points with reference to the dial graduations. |
| :--- |
| - Every $1 / 10$ revolution for the first two revolutions |
| - Every half revolution for the next five revolutions |
| - Every revolution for the next 25 revolutions |
| - Every 5 revolutions for after the 25 th revolution |
| For one revolution type dial indicators and indicators whose graduations are not factors of 10 , determine the indicatoin errors at the closest measurement points mentioned above. Next, retract the spindle more than three graduations over the entire measuring range, reverse the spindle displacement (extension direction), and determine the indication errors at the same points measured during spindle retraction. Then determine the indication errors and the retrace errors with reference to the bidirectional indication errors thus obrained. When automatically reading errors by automatic inspection machine, determine the gap between the dial hand and the graduation mark with reference to the displacement of the measuring instrument. | \& \& For 0.01 mm graduation dial indicators: A micrometer head or other measuring unit with $0.5 \mu \mathrm{~m}$ graduation or less and instrumental error of $\pm 1 \mu \mathrm{~m}$ and a supporting stand. For dial indicators other than the above: A micrometer head or other measuring unit with $1 \mu \mathrm{~m}$ graduation or less and $\pm 1 \mu \mathrm{~m}$ instrumental error and a supporting stand.

\hline Repeatability \& Apply the contact point of the dial indicator perpendicularly to the upper face of a measuring stage, retract and extend the spindle quickly and slowly five times at a desired position within the measuring range and determine the maximum difference between the five indications obtained. \& \& Measuring stage Supporting stand

\hline Measuring Force \& Holding a dial indicator, retract and extend the spindle continuously and gradually, and measure the measuring force at the zero, middle and end points in the measuring range. The largest value: maximum measurement force The smallest value: minimum measurement force The maximum difference in contact force measured when the spindle is retracting and extending at the same measuring position: difference in the measurement force \& \& | Supporting stand |
| :--- |
| Top pan type spring scale (graduation: 0.02 N or less) or force gage (sensitivity: 0.02 N or less) |

\hline
\end{tabular}

Maximum permissible error

		Maximum permissible error (MPE) by measurement characteristics -- dial indicators with the bezel dia. 50 mm or more												Maximum permissible error (MPE) by measurement characteristics --dial indicators with the bezel dia. 50 mm or less and back plunger type dial indicators						
	duation (mm)	0.01								0.005	0.001			0.01				0.005	0.002	0.001
	asuring range (mm)	1 or less	Over 1 and up to 3	Over 3 and up to 5	$\begin{aligned} & \text { Over } 5 \\ & \text { and up } \\ & \text { to } 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Over } 10 \\ & \text { and up } \\ & \text { to } 20 \end{aligned}$	Over 20 and up to 30	Over 30 and up to 50	Over 50 and up to 100	5 or less	1 or less	Over 1 and up to 2	Over 2 and up to 5	1 or less	Over 1 and up to 3	Over 3 and up to 5	Over 5 and up to 10	5 or less	1 or less	1 or less
	etrace error	3	3	3	3	5	7	8	9	3	2	2	3	4	4	4	5	3.5	2.5	2
	epeatability	3	3	3	3	4	5	5	5	3	0.5	0.5	1	3	3	3	3	3	1	1
	$\text { Arbitrary } 1 / 10$ revolution	5	5	5	5	8	10	10	12	5	2	2	3.5	8	8	8	9	6	2.5	2.5
흔	Arbitrary 1/2 revolution	8	8	9	9	10	12	12	17	9	3.5	4	5	11	11	12	12	9	4.5	4
	Arbitrary One revolution	8	9	10	10	15	15	15	20	10	4	5	6	12	12	14	14	10	5	4.5
$\stackrel{\text { 읃 }}{ }$	Entire measuring range	8	10	12	15	25	30	40	50	12	5	7	10	15	16	18	20	12	6	5

MPE for one revolution type dial indicators does not define the indication error of arbitrary $1 / 2$ and 1 revolution.

[^0]Mounting a Dial gage

Stem mounting	Method	Clamping the stem directly with a screw	Clamping the stem by split-clamp fastening
	Note	- Mounting hole tolerance: $\begin{aligned} & \\ & \text { GG7(+0.005 to 0.02) }\end{aligned}$ - Clamping screw: M4 to M6 - Clamping position: 8 mm or more from the lower edge of the stem - Maximum clamping torque: $150 \mathrm{~N} \cdot \mathrm{~cm}$ when clamping with a single M5 screw - Note that excessive clamping torque may adversely affect spindle movement.	- Mounting hole tolerance: $88 \mathrm{G7}(+0.005$ to 0.02$)$
Lug mounting	Method		
	Note	- Lugs can be changed 90 degrees in orientation according to the application. - Lugs of some Series 1 models (No.1911T-10, 1913T-10\&1003T), however, can - To avoid cosine-effect error, ensure that any type of gage or indicator is moun	The lug is set horizontally when shipped.) not be altered to horizontal. ed with its spindle in line with the intended measurement direction.

Contact point

- Screw thread is standardized on M2.5x0.45 (Length: 5 mm).
- Incomplete thread section at the root of the screw shall be less than 0.7 mm when fabricating a contact point.

Measuring orientation

Vertical position
(contact point downward)
Upside-down position
(contact point upward)
(spindle horizontal)

Setting the origin of a digital indicator

The specification in the range of 0.2 mm from the end
of the stroke is not guaranteed for digital indicators.
When setting the zero point or presetting a specific
value, be sure to lift the spindle at least 0.2 mm from
the end of the stroke.

Care of the spindle

- Do not lubricate the spindle. Doing so might cause dust to accumulate, resulting in a malfunction.
- If the spindle movement is poor, wipe the upper and lower spindle surfaces with a dry or alcohol-soaked cloth. If the movement is not improved by cleaning, contact Mitutoyo for repair.
- Before making a measurement or calibration, please confirm if the spindle moves upward and downward smoothly, and stability of the zero point.

Dial Test Indicator Standard B7533-1990 (Extract from JIS/Japanese Industrial Standards)

Notes: There are no JIS standards applicable to models with a graduation of 0.001 mm . Therefore, referring to JIS B 7533 -1990 for inspecting the wide-range accuracy and adjacent error, the accuracy is measured by moving the contact point 0.01 mm clockwise from the start point of the measuring range to the end point with reference to the graduations.

- Accuracy of indication

Permissible indication errors of dial test indicators are as per the table below.

Graduation (mm)	Measuring range (mm)	Wide range accuracy	Adjacent error	Repeatability	Retrace error
0.01	0.5	5	5	3	3
	0.8	8			
	1.0	10			4^{*}
0.002	0.2	3	2	1	2

*1: Applies to indicators with a stylus over 35 mm long.
Remarks: Values in the table above apply at $20^{\circ} \mathrm{C}$.

Dial Test Indicators and the Cosine Effect

Always minimize the angle between movement directions during use.

The reading of any indicator will not represent an accurate measurement if its measuring direction is misaligned with the intended direction of measurement (cosine effect). Because the measuring direction of a dial test indicator is at right angles to a line drawn through the contact point and the stylus pivot, this effect can be minimized by setting the stylus to minimize angle θ (as shown in the figures). If necessary, the dial reading can be compensated for the actual θ value by using the table below to give the resulut of measurement.
Result of measurement = indicated value x compensation value

Compensating for a non-zero angle

Angle	Compensation value
10°	0.98
20°	0.94
30°	0.86
40°	0.76
50°	0.64
60°	0.50

Examples

If a 0.200 mm measurement is indicated on the dial at various values of θ, the result of measurements are: For $\theta=10^{\circ}, 0.200 \mathrm{~mm} \times .98=0.196 \mathrm{~mm}$ For $\theta=20^{\circ}, 0.200 \mathrm{~mm} \times .94=0.188 \mathrm{~mm}$ For $\theta=30^{\circ}, 0.200 \mathrm{~mm} \times .86=0.172 \mathrm{~mm}$

[^0]: * Values in the table above apply at $20^{\circ} \mathrm{C}$, which JIS B0680 defines as the standard temperature.
 * The measurement characteristics of a dial indicator have to meet both maximum permissible error (MPE) and measurement force permissible limits (MPL) at any position within the measuring range in any posture when the measurement characteristics are not specified by the manufacturer.

